Maximum likelihood estimates via duality for log-convex models when cell probabilities are subject to convex constraints

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing Maximum Likelihood Estimates in Log-Linear Models

We develop computational strategies for extended maximum likelihood estimation, as defined in Rinaldo (2006), for general classes of log-linear models of widespred use, under Poisson and product-multinomial sampling schemes. We derive numerically efficient procedures for generating and manipulating design matrices and we propose various algorithms for computing the extended maximum likelihood e...

متن کامل

Convex duality in mean-variance hedging under convex trading constraints

We study mean-variance hedging under portfolio constraints in a general semimartingale model. The constraints are formulated via predictable correspondences, meaning that the trading strategy is restricted to lie in a closed convex set which may depend on the state and time in a predictable way. To obtain the existence of a solution, we first establish the closedness in L2 of the space of all g...

متن کامل

Duality for Convex Monoids

Every C*-algebra gives rise to an effect module and a convex space of states, which are connected via Kadison duality. We explore this duality in several examples, where the C*-algebra is equipped with the structure of a finite-dimensional Hopf algebra. When the Hopf algebra is the function algebra or group algebra of a finite group, the resulting state spaces form convex monoids. We will prove...

متن کامل

Generalized Neyman-pearson Lemma via Convex Duality

We extend the classical Neyman-Pearson theory for testing composite hypotheses versus composite alternatives, using a convex duality approach as in Witting (1985). Results of Aubin & Ekeland (1984) from non-smooth convex analysis are employed, along with a theorem of Komlós (1967), in order to establish the existence of a max-min optimal test in considerable generality, and to investigate its p...

متن کامل

Testing Composite Hypotheses via Convex Duality ∗

We study the problem of testing composite hypotheses versus composite alternatives, using a convex duality approach. In contrast to classical results obtained by Krafft & Witting [11], where sufficient optimality conditions are obtained via Lagrange duality, we obtain necessary and sufficient optimality conditions via Fenchel duality under some compactness assumptions. This approach also differ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Statistics

سال: 1998

ISSN: 0090-5364

DOI: 10.1214/aos/1024691361